Real-time 3-D ultrafast ultrasound quasi-static elastography in vivo

نویسندگان

  • Clement Papadacci
  • Ethan A. Bunting
  • Elisa E. Konofagou
چکیده

Ultrasound elastography, a technique used to assess mechanical properties of soft tissue is of major interest in the detection of breast cancer as it is stiffer than the surroundings. Techniques such as ultrasound quasi-static elastography have been developed to assess the strain distribution in soft tissues in two dimensions using a quasi-static compression. However, tumors can exhibit very heterogeneous shape, a three dimensions approach would be then necessary to measure accurately the tumor volume and remove operator dependency. To ensure this issue, several 3-D quasi-static elastographic approaches have been proposed. However, all these approaches suffered from a long acquisition time to acquire 3-D volumes resulting in the impossibility to perform realtime and the creation of artifacts. The long acquisition time comes from both the use of focused ultrasound emissions and the fact that the volume was made from a stack of two dimensions images acquired by mechanically translating an ultrasonic array. Being able to acquire volume at high volume rates is thus crucial to perform real-time with a simple freehand compression and to avoid signal decorrelation coming from hand motions or natural motions such as the respiratory. In this study we developed for the first time, the 3-D ultrafast ultrasound quasi-static elastography method to estimate 3-D axial strain distribution in vivo in real-time. Acquisitions were performed with a 2-D matrix array probe of 256 elements (16-by-16 elements). 100 plane waves were emitted at a volume rate of 100 volumes/sec during a continuous motorized compression. 3-D B-mode volumes and 3-D B-mode cumulative axial strain volumes were estimated on a two-layers gelatin phantom with different stiffness, in a stiff inclusion embedded in a soft gelatin phantoms, in a soft inclusion embedded in a stiff gelatin phantom and in an ex vivo canine liver before and after a high focused ultrasound (HIFU) ablation. In each case, we were able to image in real-time and in entire volumes the axial strain distribution and were able to detect the differences between stiff and soft structures with a good sensitivity. In addition, we were able to detect the stiff lesion in the ex vivo canine liver after HIFU ablation. Finally, we demonstrated the in vivo feasibility of the method using freehand compression on the calf of a human volunteer and were able to retrieve 3-D axial strain volume in real-time depicting the differences in stiffness of the two muscles which compose the calf. The 3-D ultrafast ultrasound quasi-static elastography method could have a major clinical impact for the real-time detection in three dimensions of breast cancer in patients using a simple freehand scanning. Correspondence to: Dr. Elisa Konofagou, 1210 Amsterdam Ave., ET351, MC 8904, New York, NY, 10027, [email protected], Phone: 212-342-0863, Fax: 212-342-1648. HHS Public Access Author manuscript IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 February 01. Published in final edited form as: IEEE Trans Med Imaging. 2017 February ; 36(2): 357–365. doi:10.1109/TMI.2016.2596706. A uhor M anscript

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Quasi-Static Ultrasound Elastography With Plane Wave In Vivo

In biological tissue, an increase in elasticity is often a marker of abnormalities. Techniques such as quasi-static ultrasound elastography have been developed to assess the strain distribution in soft tissues in two dimensions using a quasi-static compression. However, as abnormalities can exhibit very heterogeneous shapes, a three dimensional approach would be necessary to accurately measure ...

متن کامل

Quasi-Static Ultrasound Elastography.

Elastography is a new imaging modality where elastic tissue parameters related to the structural organization of normal and pathological tissues are imaged. Basic principles underlying the quasi-static elastography concept and principles are addressed. The rationale for elastographic imaging is reinforced using data on elastic properties of normal and abnormal soft tissues. The several orders o...

متن کامل

Ultrasound Elastography Using Three Images

Displacement1 estimation is an essential step for ultrasound elastography and numerous techniques have been proposed to improve its quality using two frames of ultrasound RF data. This paper introduces a technique for calculating a displacement field from three frames of ultrasound RF data. To this end, we first introduce constraints on variations of the displacement field with time using mecha...

متن کامل

Low-cost quasi-real-time elastography using B-mode ultrasound images.

A low cost, quasi real-time elastography system, displacement-gradient elastography (DGE), was developed by applying digital image correlation (DIC) method and smoothing algorithm to B-mode ultrasound images. In order to achieve quasi real-time elastogram display, a new fast pattern matching algorithm, decoupled cross-correlation (DCC), was proposed and validated. By applying the DGE to various...

متن کامل

Medical Physics International

As ultrasonic waves penetrate deep into tissues ultrasound imaging is able to image invisible things by “seeing through tissues” in real time. With the advent of ultrafast ultrasound imaging, the modality can reach thousands of frames per second, much faster than what the human eye can see. A completely new world is revealed as most important physiological processes in the human body occur in t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017